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Abstract

On the basis of Eu�s generalized hydrodynamics, a computational model is developed for the numerical simulation of

rarefied and microscale diatomic gas flows. The rotational nonequilibrium effect is taken into account by introducing

excess normal stress associated with the bulk viscosity of the gas. The computational model for diatomic gases reduces

to the model for monatomic gases in the limit of vanishing bulk viscosity. The thermodynamically consistent com-

putational model is applied to the one-dimensional shock wave structure and the two-dimensional hypersonic rarefied

flow around a blunt body in order to demonstrate its capability and validate the numerical results. The general

properties of the constitutive equations are also presented through a simple analysis. The numerical results show that

the new generalized hydrodynamic computational model yields the solutions in qualitative agreement with experimental

data and DSMC results in the case of the problems studied.
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1. Introduction

The study of nonlinear gas transport in rarefied condition [23,39] and microscale flows associated with

MEMS [19] has emerged as an interesting topic of significance in recent years. It has been largely motivated

by the need for a theoretical tool to efficiently predict aerothermodynamic loads on vehicles operating in

high altitude and by the growing interest in the development of theory for microscale devices in MEMS. In

the case of MEMS, the initial emphasis on the development of efficient fabrication techniques for micro-
scale devices is now shifting towards the understanding of fundamental physical phenomena in such de-

vices, which is critical in predicting their performance and in providing information on the optimal space
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within the huge design space. Thus the development of theoretical and computational models to predict the

rarefied and microscale gas flows over the large portion of flow regimes is much desirable.

The primary physical parameter that characterizes the rarefied and microscale gas flows is the Knudsen
number, and its value is not small in the aforementioned nonequilibrium flows, which occur in conditions

far removed from equilibrium. Since the Navier–Stokes theory is capable of treating phenomena in a small

deviation from local equilibrium and hence is not known to remain valid in the flow regimes of large

Knudsen number, much effort has been put into the development of computational models beyond the

theory of linear constitutive relations, typically, representative of the Navier–Stokes theory of the classical

hydrodynamics. The models, which have been employed for the aforementioned purpose, can be classified

into two categories; the full kinetic model and fluid dynamics model. One of the most successful methods in

the former category is the direct simulation Monte Carlo (DSMC) [6], and it has been extensively used for
the computation of hypersonic rarefied gas flows. The computational cost is, however, very high in com-

parison with the fluid dynamic models, in particular, in regimes near continuum limit. Moreover, it is more

akin to experiment than theory, being in the class of computer simulations. On the other hand, the fluid

dynamics models are based on the hyperbolic conservation laws and nonconserved variables appearing in

the conservation laws, the latter being determined by their evolution equations which can be derived with

the help of the Boltzmann equation.

By far several models have been developed for the latter category. This category may be subdivided into

a few classes: in one of them the Burnett-type equations [9,30,39] are used for devising computational
models; in another Grad�s moment equations [20,25] are employed in conjunction with extended thermo-

dynamics; and in still another the moment equations serving the basis of the generalization of thermo-

dynamics [1,2,15–18] have been used in a manner consistent with the laws of thermodynamics at every order

of approximation employed. These models originate from the kinetic theory of gases and come under the

general category of either the moment method of Maxwell [24] and Grad [20] or the Chapman–Enskog

method [11]. These macroscopic models were developed from the Boltzmann equation for a dilute gas with

emphasis put on the efficiency of the computational cost. However, in these models there are the question of

whether the solutions are uniquely determined, whether it satisfies the basic physical laws such as the
second law of thermodynamics, and whether proper boundary conditions can be developed, and to what

degree of nonequilibrium it is valid. Whereas all these questions apply to the classes of the models based on

Burnett-type equations and also to the class of the Grad moment equations used in the extended ther-

modynamics in the case of which the question of thermodynamic consistency does not apply, the last class

requires examination of the boundary conditions and to what extent it can remain useful when the system is

removed far from equilibrium.

Toward the aim of answering the aforementioned questions and, at the same time, developing an effi-

cient multi-dimensional computational model which satisfies the second law of thermodynamics at every
order of approximation it was found that Eu�s generalized hydrodynamic theory [15,16] was judged to be

best suited and hence was utilized in a previous work [27] on gas flow phenomena. It was shown that the

model, which was developed for a monatomic gas, yields solutions for all Knudsen numbers and under any

flow condition. The main emphasis was placed on the development of an efficient multi-dimensional

numerical schemes for the highly nonlinear generalized hydrodynamic equations.

In this work, the aforementioned generalized hydrodynamic computational model for monatomic gases

is extended to diatomic gases. Recently the generalized hydrodynamic equations for monatomic gases

have been extended to include rigid diatomic gases in the study of ultrasonic wave absorption [17] and
shock waves [2] in diatomic gases. These studies have been based on one-dimensional ordinary differential

equations. For more general applications of the generalized hydrodynamic theories it is essential to have

multi-dimensional models. We examine a multi-dimensional model within the framework of the gen-

eralized hydrodynamic equations in this work. The approach taken here is therefore similar to the one

taken in the previous work [27]; namely, we take Eu�s generalized hydrodynamic theory [18] for diatomic
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fluids. The main difference between the previous and present work is the appearance of extra equations in

the set of evolution equations of nonconserved variables, which are related to the bulk viscosity, and the

ultimate origin of the extra equations can be traced to the internal degrees of freedom related to the
rotational motion of diatomic gas molecules. In the temperature regime where the rotational relaxation is

much faster than hydrodynamic relaxations the rotational nonequilibrium effect can be simply taken into

account by introducing excess normal stress associated with the bulk viscosity of the gas [13,17]. The

explicit mechanism of rotational energy relaxation therefore is not included in the present work on the

ground that the rotational energy relaxes at a much shorter time scale than the hydrodynamic relaxation

time scale [17]. In addition, since the primary concern in the present work is to develop a computational

method for describing the translational and rotational nonequilibrium effects in diatomic gases, the high

temperature gas effects such as vibrational excitation and dissociation are omitted in the formulation for
the sake of simplicity. However, the vibrational nonequilibrium effect will play a non-negligible role in the

temperature range whose maximum is much higher than the onset temperature for vibrational excitation

(800–1000 K) [4]. For the shock structure problem, depending on the upstream temperature, the critical

Mach number of vibrational excitation can be in the range of 6 (125 K)–10 (50 K). For this reason, the

detailed comparison with the experimental data will be concentrated on the range below this critical Mach

number. A simple slip model, which is essential in the efficient computational simulation of a problem of

technical interests, is also introduced for the diatomic gas and surface molecule interaction. The new

computational model for diatomic gases readily reduces to the model for monatomic gases in the limit of
vanishing bulk viscosity. Therefore the new model for diatomic gas flows shares the basis of the com-

putational algorithm with the model for monatomic gas flows. This feature will make it possible to de-

velop the new computational code from the code for monatomic gas in a very efficient way. The present

new code, in fact, is inclusive of the computational model for monatomic gases reported in this journal

previously [27].

The present paper is organized as follows. First, the main characteristics of Eu�s generalized hydrody-

namic theory are summarized in the hope that they can help the reader see the essential idea behind the

theory, which appears at first glance very complicated and consequently its importance has not been fully
recognized in the fluid dynamics community. The present summary will follow the kinetic derivation of the

generalized hydrodynamic equations because it gives more insight when it is compared with other theories.

For the description of the purely phenomenological derivation and the detailed discussion of Eu�s gen-

eralized hydrodynamic theory, the reader is referred to his original work [1,2,15–18]. Then a generalized

hydrodynamic computational model for diatomic gases and slip boundary conditions are introduced. In

Section 3 computational algorithms for the model and the solutions of constitutive equations are described

in detail. In Section 4 numerical results for the shock wave structure and the two-dimensional hypersonic

rarefied gas flow around a blunt body are presented to demonstrate the capability of the generalized hy-
drodynamics model and to validate the numerical results thereof. Finally concluding remarks are given in

Section 5.
2. A generalized hydrodynamic computational model for diatomic gases

2.1. Eu’s generalized hydrodynamic equations

The Boltzmann–Curtiss kinetic equation for the diatomic molecule with a moment of inertia I and an

angular momentum j can be expressed, under the assumption of no external field, as [12,17]

o

ot

�
þ v � r þ j

I
o

ow

�
f ðv; r; j;w; tÞ ¼ R½f �: ð1Þ
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In this equation f , v, r, w, j, and R½f � represent the distribution function, the particle velocity, the position,

the azimuthal angle associated with the orientation of the molecule, the magnitude of the angular mo-

mentum vector j, the collision integral, respectively. In addition to conservation laws of mass, momentum,
and energy, the evolution equation for nonconserved variables can be derived by defining the following

velocity moments and then calculating their time derivatives with the help of the Boltzmann–Curtiss kinetic

equation. Define the moments by the statistical mechanical formula

UðkÞ ¼ hhðkÞf i; ð2Þ

where the angular brackets stand for integration over the variables v and j and hðkÞ denote the molecular

expressions for moments whose form will be specified later in this section. Differentiating it with time and

employing the Boltzmann–Curtiss equation we obtain the evolution equation for the kth nonconserved
macroscopic variables UðkÞ

q
DðUðkÞ=qÞ

Dt
þr � wðkÞ ¼ Zk þ Kk; ð3Þ

where wðkÞ, the flux of UðkÞ, represents higher-order moments defined by

wðkÞ ¼ hChðkÞf i ð4Þ

with C denoting the peculiar velocity of the molecule defined by C ¼ v� u, relative to the average bulk

velocity u; Zk is the kinematic term arising from the hydrodynamic streaming effect; and Kk is the dissipation

term which accounts for the energy dissipation accompanying the irreversible process. The q and D=Dt
represent the density and the substantial time derivative, respectively. The only term in the evolution
equation which is directly related to the details of the collision term in the kinetic equation is the dissipation

term Kk, and it is defined in terms of the collision term R½f � of the kinetic equation by the formula

Kk ¼ hhðkÞR½f �i: ð5Þ

This is the seat of energy dissipation that arises from the irreversible processes in the system, and at the
molecular level the energy dissipation occurs in the system through molecular collisions. Therefore it is

important to treat this term carefully before any assumption or approximation is made if we are to

comprehend properly the energy dissipation mechanism of the system in a manner consistent with the

principles of thermodynamics. Eu [15,16] developed the formal mathematical structure of nonequilibrium

entropy (i.e., calortropy [16]) and irreversible thermodynamics consistent with the second law of thermo-

dynamics by employing the nonequilibrium canonical distribution function
f c ¼ exp

"
� 1

kBT
1

2
mC2

 
þ Hrot þ

X1
k¼1

XkhðkÞ � l

!#
: ð6Þ

In this expression l is the normalization factor; Xk are the conjugate variables to hðkÞ (their role is similar to

the coefficients of the conventional moment expansion method); T is the temperature; kB is the Boltzmann

constant; m is the molecular mass; and Hrot denotes the rotational Hamiltonian of the molecule. The ad-

vantage of this exponential form of the distribution function is obvious; in the physical sense it is the only

form that satisfies the additive property of the entropy and entropy production as well as the calortropy and
calortropy production, all of which are in the logarithmic form of distribution function; in the mathe-

matical sense it assures the non-negativity of the distribution function regardless of the level of approxi-

mations. By inserting the canonical form (6) into the definition of the dissipation term (5) and introducing

the so-called cumulant expansion method [15,16], it can be shown that the dissipative term becomes the
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form of a hyperbolic sine function qðjÞ of the Rayleigh dissipation function j whose form will be presented

at the end of this section.

The evolution equation (3) is an open system of partial differential equations, so that a closure must be
introduced before any attempt of using it as a mathematical tool for the description of nonequilibrium

hydrodynamic gas transport is made. There exist various methods to achieve this goal, for example, Grad�s
closure, but it is generally accepted that there exists no single closure theory founded on a firm theoretical

justification and the effectiveness of the model highly depends on the details of the dissipative term.

The present work, for mathematical simplicity, will follow closely the Eu�s approach, which remains

within the framework of the first 13 moments, but takes a closure different from Grad�s. The basic tenet

taken for the closure used in Eu�s approach is that since higher order moments decay faster than the

conserved moments there is only a small number of moments necessary for the description of transport
processes and the moments excluded from the subspace of macroscopic variables chosen for the description

of the process of interest should not be calculated in terms of the moments belonging in the subspace

chosen. The generalized hydrodynamic model presented has been devised according to this tenet. It is

possible that other more complicated closures may be introduced, but it will be only at the cost of com-

putational efficiency. The first assumption made in this work is that in the conditions examined experi-

mentally – rarefied and microscale gas transport, for example, shock waves – the internal degrees of

freedom relax much faster than the hydrodynamic modes. This implies that the evolution equation of the

rotational energy may be suppressed in the present theory. Instead of explicitly taking into account the
rotational relaxation mechanism, its effect is described with the help of the bulk viscosity which is directly

related to the rotational degrees of freedom. However, for the problem that some physical parameters, such

as the frequency of an external force in sound wave absorption and dispersion are comparable to the

hydrodynamic scales, the evolution equations of rotational modes should be retained. Inclusion of such

equations in the model is fairly straightforward.

By the first assumption the infinite set of nonconserved moments in the evolution equation can be

truncated to the following set,

Uð1Þ ¼ P; Uð2Þ ¼ D; Uð3Þ ¼ Q;
hð1Þ ¼ m½CC�ð2Þ; hð2Þ ¼ 1

3
mC2 � p=n; hð3Þ ¼ 1

2
mC2

�
þ Hrot � mĥ

�
C:

In this expression, P, D, Q represent the shear stress, the excess normal stress, the heat flux, and the stresses
are related to the stress tensor P through the relation

P ¼ ðp þ DÞIþP; ð7Þ

where I denotes the unit second-rank tensor. The equation of state p ¼ nkBT is also assumed, where p and n
are the pressure and the number density of the molecules. The ĥ represents the enthalpy density per unit

mass and the symbol ½A�ð2Þ denotes the traceless symmetric part of the second-rank tensor A,

½A�ð2Þ ¼ 1

2
ðAþ AtÞ � 1

3
ITrA: ð8Þ

The second assumption made in this work is that the relaxation times of the nonconserved variables

ðP;D;QÞ are very short in comparison with the conserved variables such as the density and velocity. In

other words, the stress evolves much faster than the velocity does. As a matter of fact, this assumption is

based on the kinetic theory computation of the relaxation times in the absence of an oscillating external

field. Owing to the short time scale of evolution, if the system is allowed to evolve from a nonequilibrium

state characterized by non-vanishing nonconserved variables, the latter will have already reached their
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steady state on the hydrodynamic time scale, resulting in DðUðkÞ=qÞ=Dt ¼ 0, while the conserved variables

are still slowly evolving. Together with this so-called adiabatic approximation the application of the Eu

closure yields the following closure relation in Eu�s formulation of generalized hydrodynamics in which the
nonconserved variables are at the steady state,

q
DðUðkÞ=qÞ

Dt
þr � wðkÞ ¼ 0: ð9Þ

Then it can be shown that, after applying a simplification to the convective term in the evolution equation

of the heat flux which is consistent with the adiabatic approximation, the evolution equation (3) reduces to

the forms [18]

�2ðp þ DÞ½ru�ð2Þ � 2½P � ru�ð2Þ � p
g
PqðjÞ ¼ 0; ð10Þ
�2c0ðDIþPÞ : ru� 2

3
c0pr � u� 2

3
c0

p
gb

DqðjÞ ¼ 0; ð11Þ
�ðp þ DÞCpTr ln T �P � CprT �Q � ru� pCpT
k

QqðjÞ ¼ 0; ð12Þ

where

qðjÞ ¼ sinh j
j

with the dissipation function j given by the formula

j ¼ ðmkBÞ1=4ffiffiffi
2

p
d

T 1=4

p
P : P
2g

�
þ c0

D2

gb
þQ �Q

k

�1=2
:

Here c0 ¼ ð5� 3cÞ=2, where c is the specific heat ratio and d and Cp denote the diameter of the molecule and

the heat capacity per mass at constant pressure, respectively. The term ½P � ru�ð2Þ represents the coupling

between the shear stress and velocity gradient and its components can be derived by using the definition of

operation ½ �ð2Þ in Eq. (8). The g, gb and k are the Chapman–Enskog shear viscosity, bulk viscosity, and

thermal conductivity, respectively, of the diatomic molecule. The dissipation function j is the first-order
cumulant of the cumulant approximation for dissipation terms [15,16]. The colon in j denotes the double

scalar product between tensors, namely, contraction to a scalar.

Together with the aforementioned evolution equations the following conservation laws can be applied to

various applications as the governing equations for nonequilibrium diatomic gas flows,

q
qu
qE

0
@

1
A

t

þr �
qu

quuþ pI
ðqE þ pÞu

0
@

1
Aþr �

0
Pþ DI

ðPþ DIÞ � uþQ

0
@

1
A ¼ 0; ð13Þ

where E represents the total energy density.

2.2. A generalized hydrodynamic computational model

On the basis of the adiabatic approximation of Eu�s generalized hydrodynamic equations (10)–(12)

presented in the previous section, a generalized hydrodynamic computational model for diatomic gases can

be developed. If the following dimensionless variables and parameters are used
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t� ¼ t=ðL=urÞ; x� ¼ x=L; g� ¼ g=gr; k� ¼ k=kr; u� ¼ u=ur;
q� ¼ q=qr; T � ¼ T=Tr; p� ¼ p=pr; E� ¼ E=u2r ;
P� ¼ P=ðgrur=LÞ; D� ¼ D=ðgbrur=LÞ; Q� ¼ Q=ðkrDT=LTrÞ

the dimensionless evolution equations of a diatomic gas in the generalized hydrodynamics can be written as

oU

ot
þr � FT ¼ 0 ð14Þ

and

P̂qðcR̂Þ ¼ ð1þ fbD̂ÞP̂0 þ ½P̂ � rû�ð2Þ; ð15Þ
D̂qðcR̂Þ ¼ D̂0 þ
3

2
fbðP̂þ fbD̂IÞ : rû; ð16Þ
Q̂qðcR̂Þ ¼ ð1þ fbD̂ÞQ̂0 þ P̂ � Q̂0: ð17Þ

Here P̂0, D̂0 and Q̂0 are determined by the Newtonian law of shear and bulk viscosity and the Fourier law
of heat conduction, respectively,

P0 ¼ �2g½ru�ð2Þ; D0 ¼ �gbr � u; Q0 ¼ �kr ln T : ð18Þ

It should be noted that the so-called second coefficient of viscosity in the Stokes� hypothesis [36] is

equivalent to

gb �
2

3
g:

The asterisks are omitted from the aforementioned equations for notational brevity. The matrices and

other variables are defined as

U ¼
q
qu
qE

0
@

1
A;
F ¼
qu

quuþ 1
cM2 pI

ðqE þ 1

cM2 pÞu

0
B@

1
CA; Fv ¼

1

Re

0

Pþ fbDI
ðPþ fbDIÞ � uþ 1

Ec PrQ

0
@

1
A;
P̂ � Nd

p
P; D̂ � Nd

p
D; Q̂ � Nd

p
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T=ð2�Þ
p ;
rû � �2g
Nd

p
ru; � � 1

PrEcTr=DT
;
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and qðcR̂Þ is a nonlinear factor defined by

qðcR̂Þ ¼ sinhðcR̂Þ
cR̂

;

R̂2 � P̂ : P̂þ 2c0

fb
D̂2 þ Q̂ � Q̂:

The U is the vector made up of conserved variables and FT represents the sum of the inviscid flux vector F

and the viscous flux vector Fv. It should be mentioned that in the present work the term Q � ru appearing in

the constitutive relation of heat flux (12) is omitted in the computational model (17) for the sake of sim-

plicity. The M, Re, Ec, and Pr are dimensionless fluid dynamic numbers; Mach, Reynolds, Eckert, and

Prandtl number, respectively. fb represents the ratio of the bulk viscosity to the shear viscosity. Its value can
be determined by the sound wave absorption measurement. The value for nitrogen is 0.8 according to the

experiment [17]. The caret ^ over a symbol represents a quantity with the dimension of the ratio of the stress

to the pressure. The subscript r stands for the reference state; for example, the state of the inflow condition.

The constant c, which is given by

c ¼ 2
ffiffiffi
p

p

5
A2ðmÞC½4

�
� 2=ðm� 1Þ�

�1=2
ð19Þ

has a value between 1.0138 (Maxwellian) and 1.2232 (m ¼ 3), where m is the exponent of the inverse power
law for the gas particle interaction potential and C denotes the gamma function. The g, gb and k can be

expressed as g ¼ T s, gb ¼ fbg, k ¼ T sþ1 where s ¼ 1
2
þ 2=ðm� 1Þ.

For a perfect gas the following dimensionless relations hold,

p ¼ qT ; qE ¼ p=cM2

c� 1
þ 1

2
qu � u: ð20Þ

A composite number, which is defined by [15,16,18]

Nd �
grur=L
pr

¼ c
M2

Re
¼ KnM

ffiffiffiffiffi
2c
p

r

measures the magnitude of the viscous stress relative to the hydrostatic pressure, so that it indicates the

degree of departure from equilibrium. As Nd becomes small, the Newtonian law of viscosity and the Fourier

law of heat conduction are recovered [15,16,18] from the constitutive relations (15)–(17):

P ¼ P0; D ¼ D0; Q ¼ Q0:

If the Stokes hypothesis – which is nothing but neglecting the bulk viscosity – is applied, the aforemen-

tioned laws of viscosity and heat conduction yield the well-known Navier–Stokes constitutive equations:

P ¼ P0; Q ¼ Q0:

It will be shown, however, in latter section that this common practice in aerodynamic theories can

significantly affect the results for some phenomena and, in particular, for the shock wave structure, as will

be shown later.

For a diatomic gas, c ¼ 7
5
and Pr ¼ 14

19
through Eucken�s relation

Pr ¼ 4c
9c� 5

:
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2.3. Boundary conditions

For slip models for the gas–surface molecular interaction, the so-called Langmuir slip model has been
employed in the previous works [5,14,27]. They can be expressed, in the dimensional form, as

u ¼ auw þ ð1� aÞug; ð21Þ
T ¼ aTw þ ð1� aÞTg; ð22Þ

where

a ¼ bp
1þ bp

: ð23Þ

The subscript w stands for the wall and the subscript g denotes the local value adjacent to the wall – a mean
free path away from the wall. The parameter b depends on the wall temperature Tw and the interfacial

interaction parameters. By imagining the gas–surface molecule interaction process as a chemical reaction, it

is possible to express the parameter b in the form

b ¼ Alr
kBTw

exp
De

kBTw

� �
� ‘
lr
; ð24Þ

where A is the mean area of a site, and De is the potential parameter. These parameters can be inferred from

experimental data or theoretical consideration of intermolecular forces and the surface–molecule interac-

tion. l is the mean free path and ‘ is a mean collision distance between the wall surface and the gas

molecules at all angles. When the characteristic length L is taken equal to ‘, the ‘=lr becomes 1=Kn. This
parameter can be simplified into, after some manipulation,

b ¼
ffiffiffiffiffi
p
32

r
A

c2d2
STP

Tr
273

� �ð2=ðm�1ÞÞ Tr
Tw

exp
De

kBTw

� �
1

prKn
: ð25Þ

If A is approximated as pd2=4, the parameter b becomes

b ¼
ffiffiffiffiffi
p
32

r
p
c2

Tr
Tw

exp
De

kBTw

� �
1

prKn
: ð26Þ

This model can be easily extended to the case of the adsorption of a diatomic gas such as nitrogen on a

metallic surface [28]. If we assume multimolecular (double) layer on solid surfaces, the resulting relation of

a simply becomes

a ¼
ffiffiffiffiffiffi
bp

p
1þ

ffiffiffiffiffiffi
bp

p : ð27Þ

For an Ar–Al molecular interaction model and a N2–Al molecular interaction model, the following data
may be used:

De ¼ 1:32 kcal=mol:
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3. Computational algorithms

3.1. Finite volume formulation

The generalized hydrodynamic equations (14)–(17) satisfy the following collision-free hyperbolic con-

servation laws,

o

ot

Z
V
UdV þ

I
S
FT � ndS ¼ 0;

where S represents the bounding surface of the control volume V . Most of modern CFD schemes based on

the hyperbolic conservation laws can be applied to treating these equations. In the present study, the

upwind scheme with van Leer�s flux vector splitting solver [31] is used. The one-dimensional discretized

form of the hyperbolic conservation laws in the finite volume formulation can be expressed as

Unþ1
i ¼ Un

i �
Dt
Dx

Fn
T
iþ1

2

�
� Fn

T
i�1

2

�
; ð28Þ

where U is the cell-averaged conserved variables, Dx is the size of i-cell, Dt is the time step, and FT is the

numerical flux function which gives the flux through cell interfaces. Second-order accuracy can be obtained
by using the MUSCL-Hancock method [32].

The numerical flux through the interface in the discretized equation in general non-Cartesian domains

can be determined by exploiting the rotational invariance of the conservation laws (14). Let us consider the

kth intercell boundary DLk of finite area Ai;j in two-dimensional ðx; yÞ space. Let ðn; sÞk be the outward unit

vector normal to the kth boundary, and the unit vector tangent to the kth boundary with the convention

that the interior of the volume always lies on the left hand side of the boundary. If hk is defined as the angle

formed by the x-direction and the normal vector nk it can be shown that the discretized equation becomes

Unþ1
i;j ¼ Un

i;j �
Dt
Ai;j

XN
k¼1

R�1
k Fn

Tk
DLk; ð29Þ

where

Ui;j ¼

q
qu
qv
qE

0
BB@

1
CCA

i;j

; Fk ¼

qun
qu2n þ 1

cM2 p
qunus

ðqE þ 1
cM2 pÞun

0
BB@

1
CCA

k

;

Fvk ¼
1

Re

0

Pnn þ fbD
Pns

ðPnn þ fbDÞun þPnsus þ 1
Ec Pr Qn

0
BB@

1
CCA

k

;

and Rk � RðhkÞ is the rotation matrix, namely,

RðhÞ ¼

1 0 0 0

0 cos h sin h 0

0 � sin h cos h 0

0 0 0 1

0
BB@

1
CCA:
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The N is the number of interfaces in a cell. In this process a transformation law between the components of

the tensor in the (x; y) coordinates (P) and the components of the tensor in the (n; s) coordinates ( ~P) is used.

P ¼ R�1 ~PR: ð30Þ
3.2. Computations of constitutive equations

In order to solve the discretized equation (29) of the conservation laws (14) an algorithm to solve the
nonlinear algebraic system of constitutive relations (15)–(17) is necessary. It provides the stress and heat

flux, which are essential to define the numerical flux through cell interfaces. This process becomes trivial in

the Navier–Stokes equations since the stress and heat flux are proportional to the thermodynamic forces.

However, owing to the nonlinearity of the constitutive equations an additional process must be developed

in the present method. Here an iterative method will be developed to solve the constitutive equations for

given thermodynamic variables (pressure and temperature) and the gradients of velocity and temperature.

This is in sharp contrast with other moment methods, for example, the extended thermodynamics of M€uller
et al. [25] in which the constitutive equations are derived in a way that the whole system is of hyperbolic
type. In fact, the present numerical method shares more common features with the Navier–Stokes method

than other methods in the sense that the overall system is of parabolic type rather than of hyperbolic type.

This makes it possible to develop a numerical code whose basic building blocks is the same as the Navier–

Stokes code. An additional step is needed only when stress and heat flux appearing in the flux of the system

are calculated from the nonlinear algebraic constitutive equations.

In general, the constitutive equations (15)–(17) consist of 10 equations of (Pxx, Pxy , Pxz, Pyy , Pyz, Pzz, D,
Qx, Qy , Qz) for known 14 parameters (p; T ;ru, rv, rw, rT ). Owing to the highly nonlinear terms, it

appears to be difficult to develop a proper numerical method for solving the equations. Nevertheless, it can
be shown that they can be solved by a numerical method in the case of a one-dimensional problem.

In the case of a two-dimensional problem the stress and heat flux components (Pxx, Pxy , D, Qx) on a line

in the two-dimensional physical plane induced by thermodynamic forces (ux; vx; Tx) can be approximated as

the sum of two solvers: (1) one on (ux; 0; Tx), and (2) another on (0; vx; 0). It can be shown that the equations

for the first solver, which describe the compression and expansion of a diatomic gas, are given by:

P̂xxqðcR̂Þ ¼ ðP̂xx þ fbD̂þ 1ÞP̂xx0 ; ð31Þ
D̂qðcR̂Þ ¼ ½3ðP̂xx þ fbD̂Þ þ 1�D̂0; ð32Þ
Q̂xqðcR̂Þ ¼ ðP̂xx þ fbD̂þ 1ÞQ̂x0 ; ð33Þ

where

R̂2 ¼ 3

2
P̂2

xx þ
4

5fb
D̂2 þ Q̂2

x ;
D̂0 ¼
3

4
fbP̂xx0 :

The following relation between the xx-component of the shear stress and the excess normal stress can be

obtained by combining the first two equations

D̂ ¼ 1

8fb
½ð9f 2

b � 4ÞP̂xx � 4þ
ffiffiffiffi
D

p
�;
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where

D ¼ ð81f 4
b þ 72f 2

b þ 16ÞP̂2
xx þ ð32� 24f 2

b ÞP̂xx þ 16:

The following constitutive relations for the second solver, which describe the shear flow,

P̂xxqðcR̂Þ ¼ � 2

3
P̂xyP̂xy0 ; ð34Þ
P̂xyqðcR̂Þ ¼ ð1þ P̂xx þ fbD̂ÞP̂xy0 ; ð35Þ
D̂qðcR̂Þ ¼ 3fbP̂xyP̂xy0 ð36Þ

yield an equation of one variable P̂xx and an additional equation for D̂

P̂xxq2ðcR̂Þ ¼ � 2

3
1

��
� 9

2
f 2
b

�
P̂xx þ 1

�
P̂2

xy0
; ð37Þ
D̂ ¼ � 9

2
fbP̂xx; ð38Þ

where

R̂2 ¼ 3P̂xx 1

��
þ 45

4
f 2
b

�
P̂xx � 1

�
;

which follows from the stress constraint

P̂xy ¼ signðP̂xy0Þ
�
� 3

2
1

��
� 9

2
f 2
b

�
P̂xx þ 1

�
P̂xx

�1=2
: ð39Þ

It should be noted that the range of the bulk viscosity represented by fb has no effect on the mathematical

structure of the constitutive equations of the gas compression and expansion problem, but it has significant

effects on that of the shear flow problem. It can be easily shown that the stress constraint of the shear flow
problem changes its mathematical type from ellipse to hyperbola at the critical point

fb ¼
ffiffiffi
2

p

3
:

The constitutive equations (34)–(36) and (37)–(39) for a diatomic gas can be solved by extending the

method of iteration [26,27], which is originally developed for a monatomic gas. All the calculations turned

out to provide converged solutions within a few iterations. The iteration procedures can be summarized as

follows. In the solver on ðux; 0; TxÞ, for positive P̂xx0 and Q̂x0

R̂nþ1 ¼
1

c
sinh�1½c

ffiffiffiffiffi
Yn

p
�;

where

Yn � ð1þ P̂xxn þ fbD̂nÞ2R̂2
0 þ 4ðP̂xxn þ fbD̂nÞ½1þ 2ðP̂xxn þ fbD̂nÞ�

4
D̂2

0
5fb



R.S. Myong / Journal of Computational Physics 195 (2004) 655–676 667
and

P̂xxnþ1
¼ ð1þ P̂xxn þ fbD̂nÞP̂xx0ffiffiffiffiffi

Yn
p R̂nþ1;
Q̂xnþ1
¼ Q̂x0

P̂xx0

P̂xxnþ1
;

and for negative P̂xx0 and Q̂x0

P̂xxnþ1
¼ ð1þ fbD̂nÞP̂xx0

qðcR̂nÞ � P̂xx0

and

Q̂xnþ1
¼ Q̂x0

P̂xx0

P̂xxnþ1
:

Since the equations are invariant under a transform Q̂x $ �Q̂x, only two cases satisfying P̂xxQ̂x > 0 are

considered. In these expressions P̂xx1 , D̂1, and Q̂x1 are given by the equations

P̂xx1 ¼
sinh�1ðcR̂0Þ

cR̂0

P̂xx0 ;
D̂1 ¼
sinh�1ðcR̂0Þ

cR̂0

D̂0;
Q̂x1 ¼
sinh�1ðcR̂0Þ

cR̂0

Q̂x0 :

In the second solver on ð0; vx; 0Þ the P̂xx can be obtained for a given P̂xy0 through the equation

R̂nþ1 ¼
1

c
sinh�1½cYn�;

where

Yn � 2 1

��
þ 1

�
� 9

2
f 2
b

�
P̂xxn

�
1

�
� 1

�
þ 45

4
f 2
b

�
P̂xxn

��1=2
P̂xy0

and
P̂xxnþ1
¼ 2ð3�

ffiffiffiffiffiffiffiffiffiffi
Dnþ1

p
Þ

3ð4þ 45f 2
b Þ
where

Dnþ1 ¼ 12 1

�
þ 45

4
f 2
b

�
R̂2
nþ1 þ 9:
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The term Yn is well defined for any fb greater than the critical value
ffiffiffi
2

p
=3. The D̂ and P̂xy can be calculated

by using Eq. (38) and the stress constraint (39).

When 06 fb <
ffiffiffi
2

p
=3, the process of calculating the P̂xx may be replaced by the following algorithm:

P̂xxnþ1
¼ �

2P̂2
xy0

3q2ðcR̂nÞ þ ð2� 9f 2
b ÞP̂2

xy0

;

where

R̂n ¼ 3P̂xxn 1

���
þ 45

4
f 2
b

�
P̂xxn � 1

��1=2
:

The general properties of constitutive relations in the case of a diatomic gas are shown in Figs. 1–3. The

generalized hydrodynamic constitutive relations in one-dimensional ux-only problem are depicted in

comparison with the Navier–Stokes theory in Fig. 1. Here, the heat flux is assumed to be equal to zero for

the sake of simplicity. In contrast to the Navier–Stokes theory the asymmetry of the normal stress for rapid
expansion and compression of gas is predicted by generalized hydrodynamics. Even though the details are

slightly different, the general trend of the stresses for monoatomic and diatomic gases remains unchanged.

The relationship between the shear stress and the excess normal stress in the ux-only problem is shown in

Fig. 2. The relationship is almost linear in the regime of compression of gas, while it becomes highly

nonlinear in the regime of expansion of gas. Fig. 3 demonstrates that the shear stresses predicted by

generalized hydrodynamics become very small compared to the Navier–Stokes theory as the tangential

velocity gradient becomes very large. Such an asymptotic behavior indicates that the new constitutive

relations have a correct free-molecular limit, implying that the velocity slip phenomenon caused by the
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Fig. 1. Generalized hydrodynamic constitutive relations (diatomic and monatomic) relative to the Navier–Stokes relations in the ux-
only problem (c ¼ 1:0179, fb ¼ 0:8, no heat flux). The horizontal and vertical axes represent the Navier–Stokes relations P̂xx0 , and the

relations P̂xx, respectively. The gas is expanding in the range P̂xx0 < 0, whereas the gas is compressed in the range of P̂xx0 > 0.
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non-Newtonian effect can be explained in a very simple way. The ultimate origin of this behavior can be

traced to the kinematic term – specifically, the constraint equation (39) on the normal ðP̂xxÞ and shear ðP̂xyÞ
stresses.

3.3. Numerical implementation

Since the steady-state solutions are obtained by the time-marching method, a proper stability condition

is necessary. It turns out that for the present computational model the following condition for upwind

schemes works well:

Dt ¼ CFL �minðDt1;Dt2Þ; ð40Þ

where

Dt1 ¼ M
Dx
jaj

�
þ 2gð1þ 0:8fbÞM

qa2

�
;

Dt2 ¼ M
jaj
Dx

�
þ 2gð1þ 0:8fbÞM

qDx2

��1

and a denotes the speed of sound. For given Tw, Tr, uw, ur; and pr, the boundary conditions and the me-

chanical balance condition (zero normal gradient of pressure) yield the boundary values of temperature,

tangential velocity, and pressure. From these values the boundary value of the density can be determined by

the perfect gas relation. The velocity normal to the surface can be assumed to be zero. For artificial

boundaries, inflow and outflow conditions based on the number of Euler characteristics can be employed.

The discretized form of the generalized hydrodynamic equations in the finite volume formulation (29), a

time step restriction (40), and the boundary conditions (21) and (22) are the basic building blocks of the

present numerical method. It resembles numerical methods for the compressible Navier–Stokes equations
in that they all share the hyperbolic conservation laws. The present scheme, however, differs from the latter

methods in the manner of calculating the viscous flux. Since the stress and the heat flux are a nonlinear

function of thermodynamic forces, they are determined with the help of the Eqs. (31)–(33) and (37)–(39).
4. Numerical experiment

The capability of the new model is tested by considering two problems: shock wave structure and two-
dimensional hypersonic blunt body flow. The diatomic gas is assumed to be nitrogen (s ¼ 0:78 in the co-

efficient of viscosity, c ¼ 1:0179, fb ¼ 0:8), which is virtually a rigid rotator in the temperature range of

study. In general, the initial data necessary to define a well-posed problem consist of dimensionless pa-

rameters (M , Kn or Re), thermodynamic values (Tw; T1), gas properties and gas–surface molecular inter-

action parameters (s or m, De).

4.1. Shock wave structure

The shock wave structure is computed for various Mach numbers up to 10 reported in the literature. As

discussed Section 1, due to the vibrational excitation the present results may be questionable in high Mach

number cases. However, since the stagnation temperature in some experiments [7,29] is maintained such

that the vibrational and chemical effects can be assumed to be negligible, the present comparison may be

meaningful even in some high Mach number regime. The results of the inverse density thickness – one of
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important factors characterizing the shock structure – are summarized in Fig. 4. In addition, a comparison

with measurements of actual profiles of density by Alsmeyer [3] is shown in Fig. 5. The second-order ac-

curacy was maintained in this computation. In all cases a grid of 500 points with Dx ¼ 0:4 and the CFL
number 0.5 are used. A steady-state solution was considered to be obtained when the rms norm for the

density dropped below 10�7. The general configuration of the shock inverse density thickness of the present

solutions was shown to be in good agreement with experimental data and the DSMC result by Boyd et al.

[8]. It should be mentioned that only thermal and rotational nonequilibrium effects are taken into account

in the DSMC calculation. This may suggest that the present computational model is capable of calculating

shock wave structures in the wide range of Mach number in good accuracy. However, it can be observed

from Fig. 5 that there exists a deviation in actual density profiles, in particular, near the upstream state in

the shock structure. This trend turned out to remain similar for other Mach numbers. The disagreement
may be due to the omission of the term Q � ru appearing in the constitutive relation of heat flux in the

present formulation or the lack of the high temperature effects such as vibrational excitation and the

temperature variation of specific heats in high Mach number cases. On the other hand, the Navier–Stokes

theory yields the inverse widths much larger than those obtained by experiment and DSMC theory. The

Navier–Stokes theory with Stokes� hypothesis gives the worst prediction. It may be concluded from this

calculation that the bulk viscosity plays a vital role in nonequilibrium diatomic gas flows and, in particular,

in the shock wave structure.

4.2. Two-dimensional hypersonic blunt body flow

The second problem considered in the present study is a hypersonic rarefied gas flow over a blunt body.

The flow conditions are;M ¼ 5:48, Kn ¼ 0:05, Tw ¼ 293 K, T1 ¼ 26:6 K. As the first test case, a monatomic
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Fig. 4. Inverse shock density thickness for a diatomic gas (nitrogen, s ¼ 0:78). The symbols are: (v) by Greene and Hornig [21]; (n) by
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gas is considered; hard sphere molecule (s ¼ 0:5 in the coefficient of viscosity, c ¼ 1:1908). This case is

included on the ground that a simple assessment of the present method can be made for the monatomic gas

free from the complicated physical processes such as vibrational excitation. The computational domain is

defined by a patch with a grid of 48� 96 points and with near-wall adaptability. A gas–surface molecular

interaction model for a monatomic gas is used, which depends on the pressure and temperature and

provides the boundary values of temperature and velocity. The boundary condition at the outflow was

specified by extrapolation. The slip condition on the wall was applied by defining the dual ghost cells, one

for the inviscid part where the boundary values of velocity and temperature are specified, and another for
the viscous part where the values at the wall are used. Owing to the large difference between the wall and

free stream temperature a relatively small CFL number 0.1 is used. The first-order accuracy was maintained

throughout the computational domain including the boundaries for simplicity.

The comparison of changes in conserved variables (normalized density and temperature) along the

stagnation streamline is shown in Figs. 6 and 7. The R in the figures represents the characteristic length of

the blunt body, which in the present case is the radius of a circular cylinder (R ¼ 20l1). The results cal-

culated by the DSMC theory [34,35], the nonlinear model Boltzmann theory of Yang and Huang [38], and

the Euler theory are considered for comparison with the results obtained by the present computational
model. Only the DSMC result of hard sphere molecules by Vogenitz et al. [34] is shown in Fig. 6 since a

recent DSMC result with the VHS collision model by Wetzel and Oertel [35] turns out to be almost the

same. The flow structures consist of the bow shock and the stagnation region near the blunt body. As

expected, all the results predict a rapid change of flow properties across the bow shock very close to the

value given by the Rankine–Hugoniot relations. There exists, however, some discrepancy in the location

and inner profiles of the bow shock between the continuum limit Euler solutions and non-continuum so-

lutions (DSMC, nonlinear Boltzmann, and generalized hydrodynamics). The present computational model,

nonlinear Boltzmann, and DSMC solutions yield results in close agreement.
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As the second test case, a more challenging problem – hypersonic nitrogen gas flow – is calculated by the

new computational model. A gas–surface molecular interaction model for a diatomic gas represented by the

(27) is used. The flow conditions are; M ¼ 20, Kn ¼ 0:05, Tw ¼ 291:6 K, T1 ¼ 20 K. Other conditions are

exactly the same as the previous monatomic case. The comparison of normalized density changes along the

stagnation streamline is shown in Fig. 8. Since the downstream temperature (about 1600 K) behind the
shock with such high Mach number is beyond the vibrational excitation temperature, the comparison is

limited to the DSMC result by Wu et al. [37] in which the vibrational effect is excluded from the calculation.

In sharp contrast with the first case there exists a discrepancy in the general configuration of flow structures

between the Euler solutions and the non-continuum solutions. The basic flow structure in the Euler theory

remains the same as the first case – the bow shock and the stagnation region – but the structure in the non-

continuum theory becomes the shock wave and boundary layer interaction type. It can be seen from Fig. 8

that for DSMC and generalized hydrodynamics results it is impossible to identify the line that separates the

bow shock from the stagnation region or boundary layer near the wall. For the comparison of the present
theory and DSMC, on the other hand, good agreement in qualitative aspect can be observed for the type of

general flow structure and the density profile near the wall which is directly related to a gas particle pile-up.

Some discrepancy appears, however, in the exact profiles within the shock wave and boundary layer in-

teraction region. This may be attributed to, for example, the type of the energy interchange model, and the

difference in implementing the molecular models. A validation study on these issues not only in the flow

structure of conserved variables but also in the distribution of stress and heat flux near the wall will be

required to clarify the source of the discrepancy in the future.
5. Concluding remarks

As a step toward developing computational models for nonequilibrium diatomic gas flows, Eu�s gen-

eralized hydrodynamic equations of diatomic gases have been investigated. Eqs. (14)–(17) with the
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boundary conditions (21) and (22) represent a complete set of the generalized hydrodynamic computational

model for nonequilibrium diatomic gas flows. The model for diatomic gases reduces to the model for

monatomic gases in the limit of vanishing bulk viscosity. In the new model the rotational nonequilibrium
effect is taken into account by introducing excess normal stress associated with the bulk viscosity of the gas.

The general properties of the constitutive equations are obtained through a simple mathematical analysis.

With an iterative computational algorithm of the constitutive equations, numerical solutions for the multi-

dimensional problem can be obtained. Numerical results of the shock wave structure and the rarefied

hypersonic flow over a blunt body are presented. A qualitative agreement with experimental data and

DSMC results is observed for the inverse shock density thickness and the general flow structure.

The high temperature gas effects such as vibrational excitation and dissociation were not included in the

present formulation, since the emphasis was placed mainly on the translational and rotational modes of a
diatomic gas and the development of computational models, starting from the Eu�s generalized hydrody-

namics. The inclusion of such effects is straightforward, but it will require considerable change of the

present numerical algorithms. For example, the addition of the vibrational energy using the Landau-Teller

rate model [4,33] is relatively simple, but the problem of solving the resulting equations becomes compli-

cated, in particular, in numerical implementation. An extra source term is added to the conservation laws

and the specific heats become temperature-dependent. In the shock structure problem the downstream

states now depend on the upstream velocity and temperature. (In a calorically perfect gas, they depend only

on the upstream Mach number.) The closed form of the Rankine-Hugoniot relation must be replaced by
numerical solutions calculated by the iterative method.

In addition, numerical experiment was focused on the hypersonic rarefied gas flows because many ex-

perimental data and computational results using DSMC or higher-order equations are available. In the case

of microscale gas flows, in addition to the lack of experimental data available, there remains a problem to

develop a proper numerical method of the stiff generalized hydrodynamic equations for compressible low

Mach number flows. Investigation of these problems using the Eu�s generalized hydrodynamic computa-

tional models will be reported in the future work.
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